

General Certificate of Education Advanced Level Examination January 2013

Mathematics

MFP2

Unit Further Pure 2

Wednesday 23 January 20139.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Show that

$$
12 \cosh x-4 \sinh x=4 \mathrm{e}^{x}+8 \mathrm{e}^{-x}
$$

(b) Solve the equation

$$
12 \cosh x-4 \sinh x=33
$$

giving your answers in the form $k \ln 2$.

2 Two loci, L_{1} and L_{2}, in an Argand diagram are given by

$$
\begin{aligned}
& L_{1}:|z+6-5 \mathrm{i}|=4 \sqrt{2} \\
& L_{2}: \quad \arg (z+\mathrm{i})=\frac{3 \pi}{4}
\end{aligned}
$$

The point P represents the complex number $-2+\mathrm{i}$.
(a) Verify that the point P is a point of intersection of L_{1} and L_{2}.
(b) Sketch L_{1} and L_{2} on one Argand diagram.
(c) The point Q is also a point of intersection of L_{1} and L_{2}. Find the complex number that is represented by Q.
(2 marks)

3 (a) Show that $\frac{1}{5 r-2}-\frac{1}{5 r+3}=\frac{A}{(5 r-2)(5 r+3)}$, stating the value of the constant A.
(b) Hence use the method of differences to show that

$$
\sum_{r=1}^{n} \frac{1}{(5 r-2)(5 r+3)}=\frac{n}{3(5 n+3)}
$$

(c) Find the value of

$$
\sum_{r=1}^{\infty} \frac{1}{(5 r-2)(5 r+3)}
$$

4
The roots of the equation

$$
z^{3}-5 z^{2}+k z-4=0
$$

are α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$ and the value of $\alpha \beta \gamma$.
(ii) Hence find the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(b) The value of $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$ is -4 .
(i) Explain why α, β and γ cannot all be real.
(ii) By considering $(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}$, find the possible values of k.

5 (a) Using the definition $\tanh y=\frac{\mathrm{e}^{y}-\mathrm{e}^{-y}}{\mathrm{e}^{y}+\mathrm{e}^{-y}}$, show that, for $|x|<1$,

$$
\begin{equation*}
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \tag{3marks}
\end{equation*}
$$

(b) Hence, or otherwise, show that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}}$.
(c) Use integration by parts to show that

$$
\int_{0}^{\frac{1}{2}} 4 \tanh ^{-1} x \mathrm{~d} x=\ln \left(\frac{3^{m}}{2^{n}}\right)
$$

where m and n are positive integers.

6 A curve is defined parametrically by

$$
x=t^{3}+5, \quad y=6 t^{2}-1
$$

The arc length between the points where $t=0$ and $t=3$ on the curve is s.
(a) Show that $s=\int_{0}^{3} 3 t \sqrt{t^{2}+A} \mathrm{~d} t$, stating the value of the constant A.
(b) Hence show that $s=61$.
$7 \quad$ The polynomial $\mathrm{p}(n)$ is given by $\mathrm{p}(n)=(n-1)^{3}+n^{3}+(n+1)^{3}$.
(a) (i) Show that $\mathrm{p}(k+1)-\mathrm{p}(k)$, where k is a positive integer, is a multiple of 9 .
(ii) Prove by induction that $\mathrm{p}(n)$ is a multiple of 9 for all integers $n \geqslant 1$.
(4 marks)
(b) Using the result from part (a)(ii), show that $n\left(n^{2}+2\right)$ is a multiple of 3 for any positive integer n.

8 (a) Express $-4+4 \sqrt{3} \mathrm{i}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$. (3 marks)
(b) (i) Solve the equation $z^{3}=-4+4 \sqrt{3} \mathrm{i}$, giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(4 marks)
(ii) The roots of the equation $z^{3}=-4+4 \sqrt{3}$ i are represented by the points P, Q and R on an Argand diagram.

Find the area of the triangle $P Q R$, giving your answer in the form $k \sqrt{3}$, where k is an integer.
(3 marks)
(c) By considering the roots of the equation $z^{3}=-4+4 \sqrt{3} i$, show that

$$
\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=0
$$

(4 marks)

